본문
제품 정보
Correlation Recurrent Units A Novel Neural Architecture for Improving the Predictive Performance of Time-Series Data
Date | 2024.07.30. |
---|---|
Speaker | 김찬호 |
- 이전글Dynamic Curriculum Learning for Imbalanced Data Classification 24.08.06
- 다음글Snake: a Periodic Activation Function 24.07.23
Topic:
Correlation Recurrent Units A Novel Neural Architecture for Improving the Predictive Performance of Time-Series Data
Keywords:
Neural network
RNN
STL Decomposition
Reference:
Sim, Sunghyun, Dohee Kim, and Hyerim Bae. "Correlation recurrent units: A novel neural architecture for improving the predictive performance of time-series data." IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).
Cleveland, Robert B., et al. "STL: A seasonal-trend decomposition." J. off. Stat 6.1 (1990): 3-73.
첨부파일
-
Correlation Recurrent Units A Novel Neural Architecture for Improving the Predictive Performance of Time-Series Data.pdf (2.4M)
4회 다운로드 | DATE : 2024-08-06 15:24:20
저작자표시-비영리-동일조건변경허락(BY-NC-SA)
저작자와 출처 등을 표시하면 저작물의 변경, 2차적 저작물의 작성을 포함한 자유이용을 허락합니다.
단 영리적 이용은 허용되지 않고 2차적 저작물에는 원저작물에 적용된 라이선스와 동일한 라이선스를 적용해야 합니다.